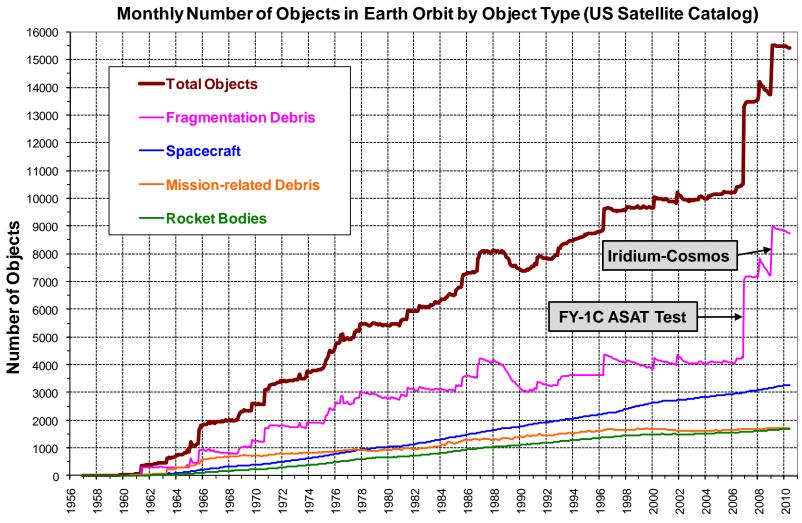
COE CST Third Annual Technical Meeting Task 244: Autonomous Rendezvous & Docking for Space Debris Mitigation Norman Fitz-Coy

October 30, 2013

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Overview

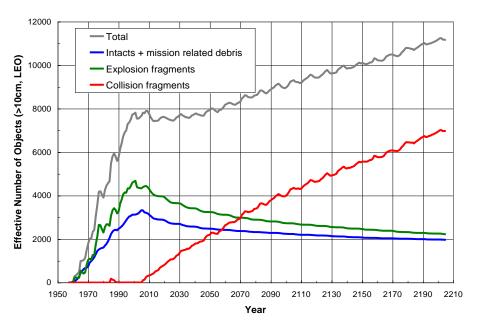
- Team Members
- Purpose of Task
- Research Methodology
- Results/Summary
- Next Steps
- Contact Information



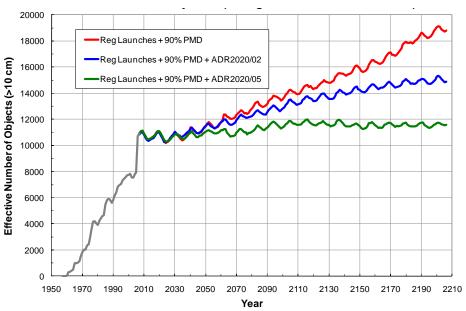
Team Members

- PI: Norman Fitz-Coy (MAE Dept. Univ. of Florida)
- Students
 - Takashi Hiramatsu (graduated 2012)
 - Kathryn Cason (accepted job)
 - Tristan Newman (new)
- Related Activity
 - DebriSat for NASA's ODPO (update to the 1992 SOCIT experiment)

Purpose of Task


Year

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013


Purpose of Task

NASA study on debris considering no new launches after 1/1/2006

- Collision fragments replace other decaying debris through the next 50 years, keeping the total population approximately constant
- Beyond 2055, the rate of decaying debris decreases, leading to a net increase in the overall satellite population due to collisions (Liou and Johnson, *Science*, 2006)

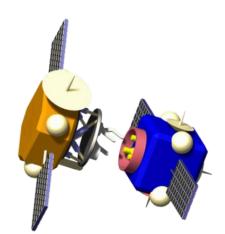
Justification for Active Debris Removal (ADR)

- PMD scenario predicts the LEO populations would increase by ~75% in 200 years
- LEO environment can be stabilized with PMD and a removal rate of ~5 objects/year

(Liou, Johnson, and Hill 2010)

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Purpose of Task


- Active debris removal is required
- Interests in small satellites (e.g., CubeSats) especially by new space entrant leads to:
 - More spacecraft \Rightarrow more failure (debris)
 - Debris likely to be non-cooperative

Objective

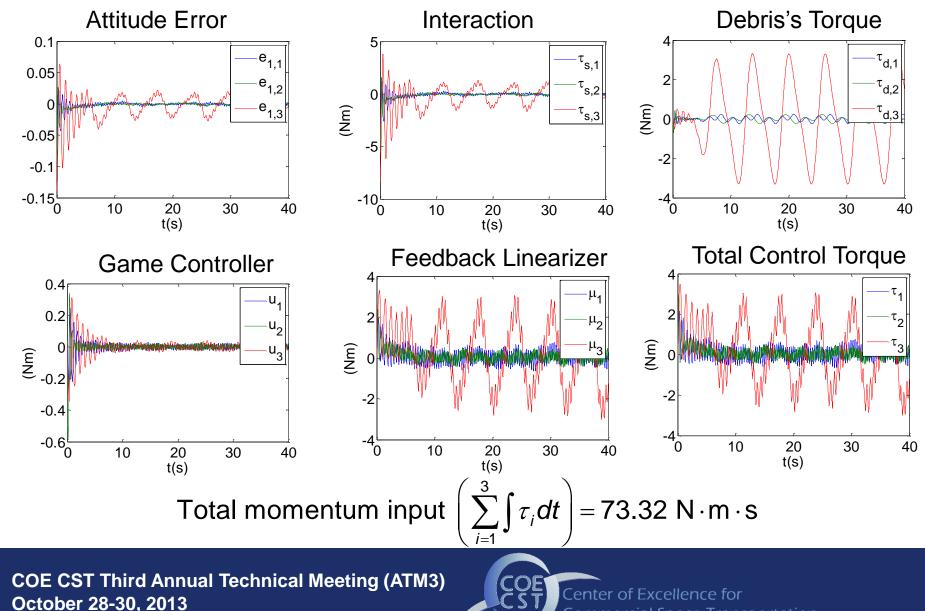
- Develop strategies to minimize interactions during removal of non-cooperative debris
- Develop strategies for safe proximity operations
 / collision avoidance during removal

- Debris Size
 - < 0.5 cm (not practical)</pre>
 - 0.5 10 cm (not tracked/not retrieved)
 - 10 cm 1 m (tracked but not retrieved)
 - > 1 m (tracked and can be retrieved)
- Removal concepts
 - Space Tugs
 - Tethers
 - Lasers

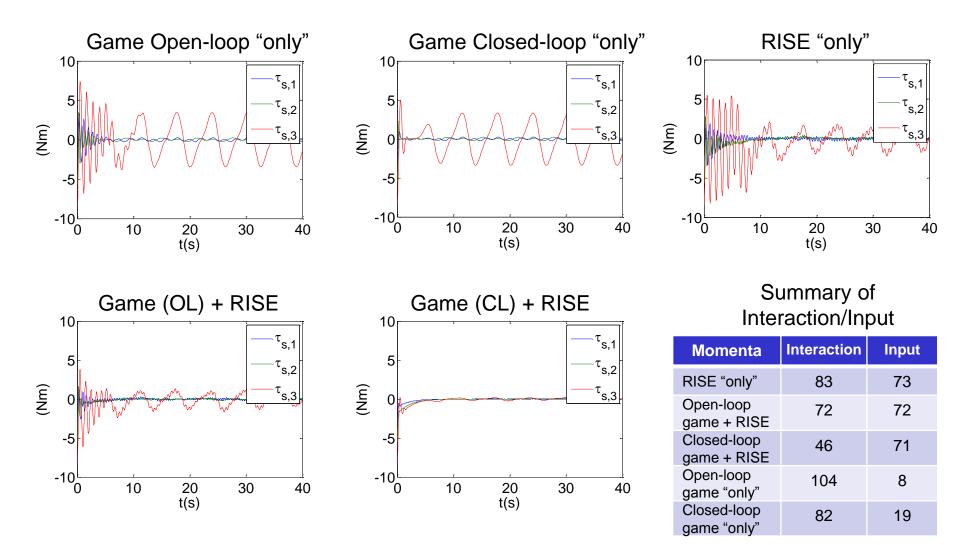
- Space Tug Concept
 - Use a space tug (ST) to maneuver larger disabled satellite (debris) into disposal orbit
 - ConOPs:
 - Autonomous proximity operations
 - Autonomous capture of target
 - Minimizing interactions between ST and non-cooperative debris

On-orbit repair of Intelsat 603 (May 1992)

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013


- Game theoretic approach
 - Formulate a two player game between the space tug (ST) and the debris
 - Use a hierarchical approach with the debris as the leader and ST as the follower (i.e., ST minimizes interaction with a non-cooperative debris)
 - Develop appropriate strategy (Stackelberg)
- Solve differential game problem

- Indirect solution method
 - Currently the only way to find a solution in general
 - Only known existing solution (LQ case only)
- Direct solution method
 - Solution algorithms for bilevel programming are not as mature as those for nonlinear programming
- Approach: Start with a LQ game and extend by adding more complexities; i.e.,
 - Linear dynamic model (small perturbations)
 - Nonlinear dynamics with linear error model (RISE)



Results / Summary

Commercial Space Transportation

Results / Summary

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Results / Summary

- Demonstrated the viability of game theoretic approach for removal of non-cooperative debris
 - Linearized dynamic model (restrictive)
 - Nonlinear dynamic model (via linearized error model)
- Investigated open-loop and closed-loop
 Stackelberg strategies
 - Both open- and closed-loop strategies when combined with RISE "linearizer" appear to produce lower interactions
 - Closed-loop + RISE appears to be best overall

Next Steps

- Continue assessment of game-theoretic methods to reduce interactions with non-cooperative debris
 - Explore multiplicative attitude error
 - Further investigate numerical approaches to solving static games / bilevel programming
- Initiate vision-based APFG for proximity operations and collision avoidance
- Collaborate with NASA ODPO (e.g., in situ characterization of LEO debris)

Contact Information

 Norman Fitz-Coy nfc@ufl.edu
 (352) 392-1029

 Tristan Newman tjdaman2@ufl.edu (352) 846-3020

